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Working with group memberships: 2-mode data 
 
So far we have only considered data in which ties are given directly among a single 
set of actors. However, there are circumstances in which there are two or more 
different kinds of actors, and ties are collected only between the two kinds of actors, 
not within each type. [martin I really don’t like this intro – you are implicitly thinking 
bipartite graph. Naïve reader would be puzzled by why there are no ties within groups 
and would assume you are talking about heterophily. I think it is better to start with 
the notion that sometimes you don’t have ties among actors but you do know their 
memberships in groups or events, from which you can infer ties. After the reader has 
worked with an example, then you can introduce bipartite idea. ]  
 
A simple example would be a group of students and a set of classes. We could 
construct a network which ties students to classes. The relationship is “attends class.” 
There would be no ties directly between students nor would there be ties between 
classes only ties connecting students to classes. We can represent this data by a 
special type of matrix called an affiliation matrix. This is rather like an adjacency 
matrix except the rows would represent one group and the students say, and the 
columns represent a different group, the classes. The matrix is no longer square and 
we refer to data of this type as 2-mode to reflect the fact there are two different types 
of nodes in the network.  
 
Davis Gardner and Gardner collected data on the attendance at 14 society events by 
18 southern women. There data is given in Figure 11.1 where the rows of the 
affiliation matrix are the women and the columns are the 14 events. 



 
 
                                 1 1 1 1 1 
               1 2 3 4 5 6 7 8 9 0 1 2 3 4 
               - - - - - - - - - - - - - - 
  1    EVELYN  1 1 1 1 1 1 0 1 1 0 0 0 0 0 
  2     LAURA  1 1 1 0 1 1 1 1 0 0 0 0 0 0 
  3   THERESA  0 1 1 1 1 1 1 1 1 0 0 0 0 0 
  4    BRENDA  1 0 1 1 1 1 1 1 0 0 0 0 0 0 
  5 CHARLOTTE  0 0 1 1 1 0 1 0 0 0 0 0 0 0 
  6   FRANCES  0 0 1 0 1 1 0 1 0 0 0 0 0 0 
  7   ELEANOR  0 0 0 0 1 1 1 1 0 0 0 0 0 0 
  8     PEARL  0 0 0 0 0 1 0 1 1 0 0 0 0 0 
  9      RUTH  0 0 0 0 1 0 1 1 1 0 0 0 0 0 
 10     VERNE  0 0 0 0 0 0 1 1 1 0 0 1 0 0 
 11     MYRNA  0 0 0 0 0 0 0 1 1 1 0 1 0 0 
 12 KATHERINE  0 0 0 0 0 0 0 1 1 1 0 1 1 1 
 13    SYLVIA  0 0 0 0 0 0 1 1 1 1 0 1 1 1 
 14      NORA  0 0 0 0 0 1 1 0 1 1 1 1 1 1 
 15     HELEN  0 0 0 0 0 0 1 1 0 1 1 1 0 0 
 16   DOROTHY  0 0 0 0 0 0 0 1 1 0 0 0 0 0 
 17    OLIVIA  0 0 0 0 0 0 0 0 1 0 1 0 0 0 
 18     FLORA  0 0 0 0 0 0 0 0 1 0 1 0 0 0 
 

Figure 11.1 
 

A one in row i column j indicates that woman i attended event j. Hence we see that 
Laura attended event 3 but not event 4. 
 
This kind of data can be analyzed in a number of different ways. Two important ways 
are converting to 1-mode and converting to bipartite form. We consider both ways in 
this chapter. 
 
11.1 Converting to 1-mode 
 
One approach to dealing with data of this type is to convert it to 1-mode data – a new 
dataset in which a pair of actors is said to be tied to the extent that they share 
affiliations. This can be a relatively simple process. As an example, consider the 
Davis data above. We can construct a new 1-mode matrix in which both the rows and 
columns represent women, and the matrix cell values indicate the number of events 
the women with the relationship attended an event together. Mathematically, this can 
be done by post-multiplying the 2-mode matrix by its transpose, but more simply, for 
each pair of rows, we look at each column and count the number of times that both are 
1. Hence Evelyn and Laura have a link in this new dataset since they both attended 
event 1 for example. On the other hand Flora did not attend any events with Laura and 
so they are not connected. In fact we can do more than simply construct a binary 
matrix we can form a proximity matrix in which the entries give the number of events 
each pair attended. These are sometimes called co-membership matrices. The co-
membership matrix for the Davis data in Figure 11.1 is given in Figure 11.2. 



 
 
                                 1 1 1 1 1 1 1 1 1 
               1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 
               - - - - - - - - - - - - - - - - - - 
  1    EVELYN  8 6 7 6 3 4 3 3 3 2 2 2 2 2 1 2 1 1 
  2     LAURA  6 7 6 6 3 4 4 2 3 2 1 1 2 2 2 1 0 0 
  3   THERESA  7 6 8 6 4 4 4 3 4 3 2 2 3 3 2 2 1 1 
  4    BRENDA  6 6 6 7 4 4 4 2 3 2 1 1 2 2 2 1 0 0 
  5 CHARLOTTE  3 3 4 4 4 2 2 0 2 1 0 0 1 1 1 0 0 0 
  6   FRANCES  4 4 4 4 2 4 3 2 2 1 1 1 1 1 1 1 0 0 
  7   ELEANOR  3 4 4 4 2 3 4 2 3 2 1 1 2 2 2 1 0 0 
  8     PEARL  3 2 3 2 0 2 2 3 2 2 2 2 2 2 1 2 1 1 
  9      RUTH  3 3 4 3 2 2 3 2 4 3 2 2 3 2 2 2 1 1 
 10     VERNE  2 2 3 2 1 1 2 2 3 4 3 3 4 3 3 2 1 1 
 11     MYRNA  2 1 2 1 0 1 1 2 2 3 4 4 4 3 3 2 1 1 
 12 KATHERINE  2 1 2 1 0 1 1 2 2 3 4 6 6 5 3 2 1 1 
 13    SYLVIA  2 2 3 2 1 1 2 2 3 4 4 6 7 6 4 2 1 1 
 14      NORA  2 2 3 2 1 1 2 2 2 3 3 5 6 8 4 1 2 2 
 15     HELEN  1 2 2 2 1 1 2 1 2 3 3 3 4 4 5 1 1 1 
 16   DOROTHY  2 1 2 1 0 1 1 2 2 2 2 2 2 1 1 2 1 1 
 17    OLIVIA  1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2 
 18     FLORA  1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2 
 

Figure 11.2 
 

We can see from the matrix that Brenda attended 6 events with Evelyn. Note that the 
diagonal elements give the number events each woman attended. We could also form 
a 1-mode matrix of the events instead of the women. This would result in an event by 
event matrix in which the entries would show how many women attended both events 
in common.  
 
Once we have 1-mode data we can then apply all of the normal techniques used for 
analyzing valued network data. There is however one important caution when taking 
this approach. If the number of actors that attend each event is large, then we must be 
careful in interpreting co-membership. Two actors can attend large events in common 
– e.g., political demonstrations – and never even meet each other. In such cases, we 
might want to interpret the co-membership tie as a potential for interaction – the more 
events a pair of women attend in common, the greater the chance of meeting, 
establishing a relationship, etc. Or we may see it as a potential for activation. For 
example, suppose you and I are strangers but I would like to enlist you to join me in 
donating some money to a charitable cause. I may have an easier time of it if I can 
point out that we attended the same university, belong to the same country club, and 
so on.  
 
A related issue with converting 2-mode data to 1-mode data is that large events create 
ties among many actors, even though the ties may be less meaningful that more 
intimate events. In most cases, we would consider it more significant if a pair of 
actors attended a number of small events together, than if they attended the same 
number of large events. Thus, when counting up the number of co-memberships per 
person, we might want to weight the events inversely by size so that co-membership 
in small events counts more than co-membership in large events. Programs like 



UCINET offer an option for performing this weighting when converting to 1-mode 
data. 
 
We might also be interested not just in the observed pattern of overlaps, but in the 
underlying tendency toward affiliation with certain actor rather others. For example, 
consider two actors who have no particular preference for each other or underlying 
commonalities. But they each attend many events – they are joiners. Then by chance 
alone, we should expect to find many instances in which they overlap. In contrast, 
consider two actors who are best of friends and do everything together. But they 
attend few events in a year. They will not overlap as much as the two described 
earlier, but as a percentage of the number of possible overlaps, they would be much 
higher. Thus, another possibility is to normalize the raw com-memberships by 
dividing by the maximums possible – given the number of events each attended 
overall – or by comparing with the expected values in a chance model, much like the 
chi-square test for independence in statistics. These options are also offered in 
programs like UCINET.  
 
Finally, it is worth noting that the process of constructing normalized measures of 
overlaps can be viewed as measuring the similarity of rows (or columns) of the 2-
mode matrix. Hundreds of similarity measures appropriate for binary data have been 
proposed in the literature, almost all of which can be used in this context as well.  
 
11.2 Converting Valued 2-Mode Matrices to 1-Mode 
 
So far we have only considered binary affiliation matrices. If the original 2-mode data 
were valued then we would need to take account of this when we construct our 1-
mode datasets. As noted earlier, the matrix given in Figure 11.2 can be constructed 
from the matrix in Figure 11.1 by simply multiplying the original matrix by its 
transpose. Effectively, for each pair of rows we simply multiply the entries in each 
column and sum them up. Since a zero times anything is zero, the sum is only greater 
than zero when there are columns in which both values are 1s. We can use the same 
method for valued data. However this would mean the elements would be multiplied 
and then summed to give a value in the 1-mode data. This is a figure that is rather 
difficult to interpret, although clearly high values would indicate strong ties to the 
same events.  
 
A more interpretable approach would be to take the minimum of the two cell values 
rather than the product. Hence if row i was (5,6,0,1) and row j was (4,2,4,0) then 
AA'(i,j) is 5x4+6x2+0x4+1x0=32 for the normal matrix product and 
min(5,4)+min(6,2)+min(0,4)+min(1,0)=6 for the minimum method. These would 
produce the same answers for binary data. To see why the minimum is more 
interpretable suppose the 2-mode dataset recorded how many hours each member of a 
consulting company spent on each client project. That is, the rows are persons and the 
columns are projects. Then constructing the person-by-person 1-mode matrix using 
the minimum method would yield the maximum possible time each pair of persons 
could have spent together.  
 
11.2 Bipartite Networks 
 



One of the problems with converting the affiliation matrix to 1-mode is that there is a 
loss of information. Two women could have the same degree of overlap as another 
pair of women, but through entirely different events. An alternative approach is to 
treat the affiliation matrix as if it were a piece of a much larger adjacency matrix in 
which the rows consist of both women and events, and the columns also consiste of 
both women and events, as shown in Figure xxxx. Note that ties exist only between 
women and events – there are no ties among women or among events. A dataset with 
this structure is known as a bipartite network. A graphical representation of the 
bipartite version of the Davis data is shown in Figure 11.3.  
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Figure 11.4. Circular nodes indicate women, square nodes indicate events. 

 
An alternative visualization is to put the women on one side of the picture and the 
events on the other so that the edges only go across the page. 
 
Since the bipartite network is simply a network then we can apply all of the normal 
network methods. However we need to be aware that since edges cannot occur within 
the two groups, this will affect our results. For example we cannot find any cliques, 
since the shortest possible cycle is of length 4. Also, standard normalizations of 
measures like centrality usually assume that all actors could in principle be connected 
to each other. Take as an example degree centrality. Ruth has degree 4 and so the 
normalized degree centrality would take the 4 and divide it by n-1, which is 31 in this 
case, to yield a normalized centrality of 13%. But Ruth could only attend a maximum 
of 14 events and so her normalized degree centrality should actually be 29%. We can 
run all of the standard centrality and centralization routines but we need to adjust the 
normalization scores to reflect the nature of the data.  
 
We can also adjust the fit function for the optimization routines to take account of the 
special nature of 2-mode data. Hence we can search for 2-mode factions or 2-mode 
core periphery structures. 
 


